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Modeling buffer capacity and pH in acid
and acidified foods
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and Fred Breidt

Abstract: Standard ionic equilibria equations may be used for calculating pH of weak acid and base solutions. These
calculations are difficult or impossible to solve analytically for foods that include many unknown buffering components,
making pH prediction in these systems impractical. We combined buffer capacity (BC) models with a pH prediction
algorithm to allow pH prediction in complex food matrices from BC data. Numerical models were developed using
Matlab software to estimate the pH and buffering components for mixtures of weak acid and base solutions. The pH
model was validated with laboratory solutions of acetic or citric acids with ammonia, in combinations with varying salts
using Latin hypercube designs. Linear regressions of observed versus predicted pH values based on the concentration
and pK values of the solution components resulted in estimated slopes between 0.96 and 1.01 with and without added
salts. BC models were generated from titration curves for 0.6 M acetic acid or 12.4 mM citric acid resulting in acid
concentration and pK estimates. Predicted pH values from these estimates were within 0.11 pH units of the measured pH.
Acetic acid concentration measurements based on the model were within 6% accuracy compared to high-performance
liquid chromatography measurements for concentrations less than 400 mM, although they were underestimated above
that. The models may have application for use in determining the BC of food ingredients with unknown buffering
components. Predicting pH changes for food ingredients using these models may be useful for regulatory purposes with
acid or acidified foods and for product development.
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Practical Application: Buffer capacity models may benefit regulatory agencies and manufacturers of acid and acidified
foods to determine pH stability (below pH 4.6) and how low-acid food ingredients may affect the safety of these foods.
Predicting pH for solutions with known or unknown buffering components was based on titration data and models that
use only monoprotic weak acids and bases. These models may be useful for product development and food safety by
estimating pH and buffering capacity.

1. INTRODUCTION
The market for acid and acidified foods and beverages in

the United States includes fermented and acidified vegetables,
sports drinks, carbonated beverages, fruit juices, salad dressings
and sauces, salsas, and others. The U.S. acidified food regulations
define acid and acidified foods as having an equilibrium pH value
at or below pH 4.6 (FDA, 1979). A pH below 4.6 has been shown
to be sufficient to prevent botulism in these food products (Ito
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& Chen, 1978). For many of these foods, weak organic acids are
either naturally present, produced by fermentation, or added to
maintain the pH. Most common food acids have pK values near
or below pH 4.6 (CRC, 1995) and function as buffers in the pH
range of most acid or acidified food products, typically pH 3.2 to
4. Buffering in acid or acidified foods is important in maintaining
the equilibrium pH below 4.6 for the entire shelf life of these
foods.

In addition to lowering pH and acting as buffers, the proto-
nated forms of weak acids are antimicrobial (Breidt, 2006; Ho-
sein, Breidt, & Smith, 2011; Russel, 1992) and have been shown
to contribute to sour taste perception (Neta, Johanningsmeier,
Drake, & McFeeters, 2009). For weak acid preservatives, un-
charged protonated weak acids are relatively hydrophobic and can
diffuse through bacterial membranes. Once inside of a bacterial
cell, they dissociate in the cytoplasm, which typically has a pH
around neutral (pH 6 to 7). This results in two problems for a
bacterial cell in the presence of weak acids in acid or acidified
foods where the external pH is 2 to 3 pH units below the cyto-
plasmic pH. First is the acidification of the cytoplasm of the cells,
and second is the intracellular accumulation of weak acid anions
(Russel, 1992). Therefore, the antimicrobial efficacy of weak acid
preservatives, including sodium benzoate and potassium sorbate,
as well as the acids present in most acidic foods and beverages, is
dependent on the ratio of protonated to dissociated (acid anion)
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form of the acids as defined by the Henderson–Hasselbalch equa-
tion (reviewed in Bugler & Cogley, 1998). The pH of acidic foods
and beverages is influenced by the complex and often unknown
buffer components, so it is critical to be able to predict pH in a
complex buffer system.

Buffer capacity (BC) models have been developed using equa-
tions for the ionic equilibria of weak acids and bases in solution
(Butler & Cogley, 1998). For relatively simple defined solutions of
weak acids or bases, buffering may be modeled analytically to de-
termine pH, the concentrations of all the ions in solution, as well as
uncharged acid or base species. For undefined systems with multi-
ple unknown buffers, the BC can be estimated using the derivative
of titration curves for environmental applications such as landfill
leachate (Gibs, Shoenberger, & Suffet, 1982), water quality (Van
Vooren, Van De Steene, Ottoy, & Vanrolleghem, 2001), and bever-
ages including beer and wine (Dartiguenave, Jeandet, & Maujean,
2000; Li, Liu, Kang, & Zheng, 2015). Estimating the pK and con-
centration of buffers in solution requires numerical methods for
nonlinear curve fitting. Existing computer or mathematical mod-
els (Gordon, 1982; Johansson & Johansson, 1979; Simms, 1926;
Van De Steene, Van Vooren, Ottoy, & Vanrolleghem, 2002) have
shown the utility of using the simplifying assumption that a se-
ries of monoprotic acids can represent the buffering of a complex
system with unknown polyprotic or monoprotic weak acids and
bases. Previous studies, however, did not combine BC models with
pH prediction for food ingredients with unknown buffering, such
as spices, vegetable material, and other low-acid ingredients. We
have developed a combined BC–pH prediction model to aid in
determining the safety and pH stability of acid and acidified foods.

For applications such as the addition of low acid food ingredi-
ents to an acid food, predicting how pH may change is important.
Our objective was to determine the buffering components (as
known or hypothetical monoprotic acids or bases) in acid and low
acid food ingredients. Once a matrix of concentration and pK
values has been estimated for food ingredients, the model may
be used to predict pH of solutions containing those ingredients
at various concentrations with other ingredients for which BC is
known. We include data on pH prediction with sodium and cal-
cium (monovalent and divalent cations) chloride, under a variety of
pH conditions, to be relevant to food matrices, including recently
developed calcium-based vegetable fermentations (MccFeeters &
Perez-Diaz, 2010). A companion paper (Longtin, Price, Mishra,
& Breidt, 2020) reports data from BC models for a variety of acid
and low-acid ingredients in salad-dressing products. Once the BC
of an acid or low-acid ingredient is known, the magnitude of pH
changes due to the addition of that ingredient to acid or acidified
foods may be estimated. The combined BC–pH prediction model
may be useful for food safety applications and product develop-
ment applications by enabling the prediction of equilibrated pH
in food ingredient mixtures.

2. METHODS

2.1 Modeling pH of buffer solutions
To determine pH from a mixture of monoprotic weak acids

and bases, the molar concentrations Ca and Cb for the acids and
bases and the corresponding equilibrium constants Ka or Kb val-
ues are required. An algebraic equation may be derived from the
combined weak acid equilibrium and charge balance equations
to solve for [H+] (and therefore pH) with Kw being the equilib-
rium constant of water (10−14), as described by Butler and Cogley

Table 1–Matlab program dependencies for the model.

Program name Description

Data2Beta.m Process titrator data to generate BC curve
fillgaps.m Fill gaps in BC curves with a given increment and

linear model
SCBCfit.m Implement the trigonometric regression algorithm
SimplexBCPK_DF.m Fit the buffer model to the trigonometric

regression curve
Beta2Conc.m Convert a BC value to a molar concentration for a

buffer
BetaModel_AB.m Calculate a BC curve from a matrix of buffer

concentration and pK value
CalcpH_AB.m Calculate pH from a matrix of buffer

concentration and pK values
ConbineABs.m Merge buffers with closely related pK values (see

pK_tol, Table S3)
Conc2Beta.m Convert a buffer concentration to a BC value
PlotBCfit.m Plotting function to generate BC curve plots
AdjpKa_AB.m Adjust a pK value for temperature and ionic

strength
GetAdjC.m Calculate the salt of an acid or base needed to

optimize pH (M/L)
fmincon.m Matlab function (optimization toolbox)
fminsearch.m Matlab function (optimization toolbox)

(1998):

Acid term, Base term, Hydroxyl [OH−] term

[H+] = (CaKa/(Ka+[H+])) − (Cb[H+]/([H+] + Kb))

+ Kw/[H+] (1)

To solve Eq. 1 for [H+], the solution of a fourth-order poly-
nomial is required. Because the order of the polynomial equation
increases with additional acid or base terms, numerical solutions
may be used for estimating pH. Generalizing for multiple mono-
protic acids and bases as well as rearranging and adding terms for
the concentration of the salts of acids or bases Ani, (a positive value
for anions) or Cti (negative value for cations) results in

0 =
∑

(Cai Ka i /(Kai + [H+])) −
∑

(Cbi [H+]/([H+] + Kbi ))

+ Kw/[H+] − [H+] +
∑

(Ani + Cti ) (2)

An algorithm was developed using Matlab (CalcpH_AB.m;
Table 1) to obtain a numerical solution to Eq. 2 for a given
set of concentration, pK and An or Ct values using Newton’s
minimization method as suggested by Butler and Cogley (1998).
A defined tolerance (10−10 for the error-function value, or 1,000
iterations) was used as the stopping criterion for the minimization
algorithm. The concentrations of acid and base solutions used for
pH validation studies were based on a Latin hypercube method
(Garud, Karimi, & Kraft, 2017; McKay, Beckman, & Conover,
1979) to represent an unbiased distribution of concentrations.
Except as noted, all chemicals were obtained from Sigma–Aldrich
(St. Louis, MO, USA). Solutions without added salt included 0
to 50 mM acetic acid or citric acid and 0 to 10 mM ammonia
and were prepared as shown (Figure 1). Similarly, acetic acid (0 to
100 mM) and ammonia solutions (0 to 20 mM; Figure 2A) were
prepared containing salt mixtures of calcium chloride (CaCl2)
and sodium chloride (NaCl) (Figure 2B). For pH estimation,
the equilibrium constants for acids and bases (transformed by the
negative log10 to pK values) were adjusted as needed for ionic
strength due to added sodium calcium salts using the Davies
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Figure 1–Buffer composition for pH validation with no added salt. The
solution compositions for mixtures of acetic acid (triangles) or citric acid
(circles) in combination with ammonia are shown.
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Figure 2–Buffer composition for pH validation with varying ionic strength
using randomly selected combinations of NaCl (0 to 1.2 M) and CaCl2 (0
to 0.325 M). Solutions containing mixtures of acetic acid and ammonia as
indicated by the numbered circles (A). The corresponding numbered data
points showing NaCl and CaCl2 concentrations as indicated by the triangles
(B).

Table 2–Example parameter file.

Parameter Value Description

minDeltapH 0.02 Smallest pH change allowed due to an addition of
acid or base

Order 15 Number of terms in the Trigonometric regression
MinConc 0.001 Minimum buffer concentration from model

predictions (M/L)
WaterSalt 2 NaCl percent for calculating the water BC curve
NaClpercent 2 NaCl percent for calculating the BC curve
NpKs 7 Initial number of pK values for the BC model fit
UB 12 Upper bound for the pH range for BC curve fit
LB 2 Lower bound for the pH range for BC curve fit
pK_tol 0.2 Minimum pH difference in adjacent pK values
trim_beg 0 Number of data points to trim from the start of the

BC curve
trim_end 10 Number of data points to trim from the end of the

BC curve
adjC 0 Concentration (M/L) for salt of an acid or base

(cations = –val)
minGap 0.3 Minimum gap in pH for linear auto-filling BC curve
increment 0.1 Increment of pH value for gap filling of BC curve

equation (AdjpK_AB.m; Table 1) as suggested by Butler and
Cogley (1998, p. 94). Further details of the concentrations used
for validation studies are shown in Table S1 and S2.

2.2 Titrations
A 0.6 M solution of acetic acid with 2% NaCl was prepared

from a commercial vinegar stock solution (approximately 30%
acetic acid) in deionized water and 50 mL was used for titration
with 1.2 N hydrochloric acid (HCl) or 1.3 N sodium hydroxide
(NaOH) using an automated titrator (Model 902, Hanna Instru-
ments, Smithfield, RI, USA). Similarly, 12.4 mM citric acid with
2% NaCl (Sigma–Aldrich) solution was prepared in water and
50 mL used for acid or base titration with 0.122 N HCl or 1.38
N NaOH. The titrator was set to use dynamic dosing over a pH
range of pH 2 to 12 from the starting pH of the solution. Data
were exported from the titrator as a text file and processed using
a custom Python script (GetCurve.py, F. Breidt, unpublished) to
generate a comma delimited data file containing two columns: the
volume of acid or base added and the resulting pH. The data were
then imported into Matlab with the built in csvread.m function
and saved as a Matlab workspace variable. Additional workspace
variables were added, including the concentration of the acid and
base used for titration and the initial volume for the titration.

Matlab functions for the BC modeling procedures described
below are listed in Table 1. Matlab version R2018a was used for
processing the data. A single Matlab “Live-Script” file was used
to sequentially call the functions and process the data. Model pa-
rameters are listed in Table 2. Parameters were stored in a text
file and were imported as workspace variables at the start of the
live-script. To generate a BC curve from the titration data, an iter-
ative step-wise derivative was calculated (Butler & Cogley, 1998,
p. 133) with the acid or base concentration used and volume
titrated (function Data2Beta.m; Table 1):

β = � (Acid or Base)/�p H (3)

where �Acid or �Base represented the change in normality of
acid or base in the solution being titrated (based on the volume
added at each titration step and the concentration of the HCl or
NaOH) with the resulting pH change �pH. A minimum change
(typically 0.02 pH units) in pH was defined to prevent deviations
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in the derivative if an air bubble was in the acid or base liquid
delivery line of the titrator, or some other error occurred during
titration (minDeltapH in Table 2). Prior to further processing, BC
curves were manually trimmed by setting trim_beg or trim_end
(Table 2) as needed, so the ends of each BC curve, typically at
pH 2 and pH 12, had similar BC values. In addition, gaps in the
BC greater than a set pH value, typically 0.3 pH units or greater
(minGap; Table 2), were automatically filled with BC data points
at a specified interval of 0.1 pH units (increment; Table 2) using
a linear function between the end points of the gap (fillgap.m;
Table 1). These steps were necessary to facilitate the subsequent
use of curve fitting algorithms.

2.3 Modeling BC curves
Curve fitting for BC data was accomplished using a trigono-

metric least squares regression method (Eubank, 1990; Newbery,
1970), based on the equation:

F (x) = Bo + A1sin (αx) + B1cos (αx) + A2sin (2αx)

+ B2cos (2αx) + A3sin (3αx) . . . (4)

where F(x) represented the BC value for a given pH (represented
as the variable x), Ai and Bi were scalar parameters, and α was a
multiplier (0.5) used for x to fit pH values between pH 2 and 12.
The model results were fit to the BC data by minimizing the error
sum of squares:

SS(E) =
∑

(F (x) − Y (x))2 (5)

where F(x) was the trigonometric series model (Eq. 4) and Y(x)
was the BC curve generated from Eq. 3. To estimate parameters for
the trigonometric model, a square matrix (M) of partial derivatives
with respect to each parameter (Pi) of Equation 5 was generated:

∂SS(E)/∂ (Pi ) = 0 (6)

An optimized parameter vector (Po = B0, A1, B1, A2, B2, . . . )
for the terms in Eq. 4 was then obtained using Matlab’s “mldivide”
operator to solve the matrix equation M∗Po = Yi, where the vec-
tor Yi consisted of the corresponding Y(x) term for each partial
derivative equation (implemented as SCBCfit.m; Table 1). Typi-
cally, 15 Ai and Bi parameters (defined as the parameter “Order”;
Table 2) were used for the solution. The resulting trigonometric
series model with optimized parameters (Po) represented a math-
ematically defined smoothed curve representing the BC data and
was used as a template for modeling the BC curve with the BC
model as described by Butler and Cogley (1998):

β = 2.303 ×
(∑(

Ci Ki [H+]/
(
[H+] + Ki

)2
)

+ Kw/[H+] + [H+]
)

(7)

where Ci and Ki are the concentration and dissociation constants
for weak acids or bases that contribute to buffering in the solution
that was originally titrated and Kw is the equilibrium constant for
water.

A matrix of Ci and Ki parameter values was obtained for
the optimized fit of Eq. 7 to the trigonometric function, using
the constrained nonlinear minimization algorithm fmincon.m
(Optimization Toolbox, Matlab) to minimize squared error values

(implemented as SimplexBCPK_DF.m; Table 1). Starting values
for the minimization algorithm were chosen by using a predefined
number of pK values, typically 7 (parameter NpKs; Table 2),
evenly distributed between the minimum and maximum pH val-
ues for the titration curve with the corresponding concentrations
estimated (assuming pH = pK) from BC value from the trigono-
metric regression model. The NpKs parameter value could also
be adjusted manually based on the complexity of the BC curve.
Concentrations were constrained to positive values only, and Ki

values (transformed to pK values) were constrained between the
upper and lower pH values for the BC curve, typically pH 12
to 2 (defined as UB and LB, respectively, in the parameter file
Table 2). For the resulting concentration–pK matrix, all pK values
that were within a set tolerance of each other, typically 0.2 pH
units (pK_tol; Table 2), were combined and the corresponding
concentration values (Ci values) were added. The result was an
N × 2 matrix of concentration and pK values for each ingredient.
The estimated pH from the matrix was then determined using
Eq. 2 with An and Ct equal to zero, with corrections of the
pK due to the NaCl concentration (NaClpercent; Table 2). An
additional parameter (WaterSalt; Table 2) was used for correcting
the BC of water for the final BC graph. By default, pK values for
buffers identified by the model that were greater than pH 7 were
considered bases for pH estimation (by Eq. 2), and pK values for
buffers with a pK less than or equal to pH 7 were considered acids.

To model salts of acids or bases for pH prediction from the BC
model data, a positive or negative value representing the sum of An

and Ct (add for anion or subtract for cation) was used to minimize
the squared difference between the observed and predicted pH
using Eq. 2 (GetAdjC.m; Table 1). The magnitude of this value
was essentially the millimolar concentration of the salt of the acid
or base. If no acid or base salts were present, the magnitude of this
“ion” value represented the error in the model for the predicted
BC curve. If known acid or base salts were present, this value could
be set in the parameter file (parameter adjC; Table 2).

2.4 Model validation for pH prediction
Space-filling Latin hypercube experimental designs (McKay

et al., 1979) were used for pH model validation. Simple mixtures
of 0 to 50 mM citric acid or acetic acid and 0 to 10 mM ammonia
were used at the concentrations indicated in Figure 1 and Table S1.
A third validation solution set (n = 30) was generated for mixtures
of 0 to 100 mM acetic acid and 0 to 20 mM ammonia that varied
in ionic strength from 0 to 1.5 M using randomly selected combi-
nations of 0 to 1.15 M sodium chloride and 0 to 0.33 M calcium
chloride that cover the range that is commonly used in acidified
foods (Figure 2; Table S2). Analytical grade reagents were used for
all pH validation assays, including glacial acetic acid, ammonium
chloride, CaCl2, and NaCl (Sigma–Aldrich). Stock solutions of
glacial acetic acid (0.3 M) in water, ammonium chloride (0.06 M)
in water, CaCl2 (1.02 M) in water, and NaCl (3.04 M) in wa-
ter were prepared in 1.0-L volumetric flasks measured by w/v%.
The stock solutions were stored at room temperature. Aliquots
of each stock solution were added as appropriate to generate the
solutions with or without added salts (as described above) in a
50 mL final volume in a volumetric flask with deionized water.
Each solution was mixed by inversion before being transferred to
100 mL plastic beakers for pH measurement. The pH of each sam-
ple was measured at ambient temperature using an Accumet AR25
pH meter (Fisher Scientific) equipped with a gel-filled electrode
(model FC210, Hanna Instruments), which was calibrated with
certified standards of pH 2.00, 4.00, 7.00, and 10.00.
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2.5 High-performance liquid chromatography analysis
High-performance liquid chromatography (HPLC) of acetic

acid solutions was conducted using a modification of the method
of McFeeters and Barish (2003). Separation was performed us-
ing an Aminex HPX-87H column (300 mm × 7.8 mm, Bio-Rad
Laboratories, Hercules, CA, USA) with a Shimadzu HPLC system
(UFLC Shimadzu Scientific Instruments, Durham, NC, USA) and
the accompanying software from the manufacturer. The mobile
phase was 0.01 N sulfuric acid with a flow rate of 0.9 mL/m. The
column temperature was 65 °C. Acetic acid was quantified using a
refractive index detector (RID-10A, Shimadzu) with a calibration
curve in the range of 0.5 to 100 mM.

2.6 Data analysis
To analyze the pH predictions, a statistical model was fit to

the n = 69 observed pH levels with the general linear models
procedure of SAS (SAS Institute, Inc., Cary, NC, USA) statistical
analysis software. For the observed and predicted pH for aqueous
solutions with ammonia, acetic acid, and citric acid, three types
of salt conditions were used: no added salts with ammonia and
acetic acid (NS_A); no added salts with ammonia and citric acid
(NS_C); and ammonia and acetic acid with combinations of CaCl2
and NaCl (WS) (see Figure 1 and 2). The dependence of the
observed pH on the prediction was allowed to vary across the
three validation studies with a different slope parameter for each.
The linear model was stated formally as

p Hi = β1 Xi1 p̂ Hi + β2 Xi2 p̂ Hi + β3 Xi3 p̂ Hi + εi (8)

Here, i was an index for each observation, β1, β2, and β3

denoted the three salt-specific slopes (NA_S, NA_C, and WS, re-
spectively), pHi was the prediction based on the Eq. 2 above, and εi

represented the experimental error. For j = 1, 2, and 3, Xij was an
indicator variable taking the value of 1 if observation i comes from
salt level j, and otherwise was 0. For analysis of buffer concentra-
tions from titration data, a second-order polynomial regression for
measured and predicted buffer concentrations was done in Excel.
The Matlab programs and related files are available at (https://
www.ars.usda.gov/southeast-area/raleigh-nc/food-science-
research/).

3. RESULTS AND DISCUSSION
To analyze the quality of pH predictions, a statistical model was

fit to the n = 69 observed pH levels for buffer solutions con-
taining ammonium chloride, acetic acid, or citric acid with and
without mixtures of CaCl2 and NaCl (Figure 1 and 2). Solution
pH was measured and compared to model predictions (Figure 3).
The majority of pH values were targeted to be between pH 3 and
pH 4 to be relevant for most acid and acidified food products.
The model algorithm (CalcpH_AB.m; Table 1) provided an ex-
cellent fit for describing the association between the observed and
predicted pH, with a coefficient of determination (r2) = 0.9915.
The root mean squared error from this model was 0.138. With
an average observed pH in the study of 3.35, this results in a
coefficient of variation that was less than 4%. Although all esti-
mated slopes were close to 1, there was a significant difference
among them (F = 10.7, P < 0.0001, df = 2, 66). In particular, the
slopes for both no-salt treatments (NS_A and NS_C) were signif-
icantly lower than the slope for the salt treatment (WS; Table 3).
Figure 3A shows the overlays of the general linear statistical model
with the regression lines corresponding to the three salt treat-
ments. Figure 3B shows that the relative error of prediction stays
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Figure 3–Observed and predicted pH data. The relationship between the
observed (measured) pH values and the predicted pH values from the
model (panel A) and the relative error for each data point (panel B). The
buffer solutions consisted of acetic acid and ammonia solutions without
added salts (NS_A, triangles); citric acid and ammonia solutions without
added salts (NS_C, circles); and acetic acid and ammonia solutions with
NaCl and/or CaCl2 (WS, squares). The lines in panel A represent linear
regression for each data set: NS_A, dotted line; NS_C, dashed line; WS,
solid line.

Table 3–Slope parameters for regression analysis.

Slope pa-
rameter

Salt and
acid typea

Least squares
estimate

Standard
error

95% Confidence
limits

β1 NS_A 0.9653 0.0071 (0.9478, 0.9828)
β2 NS_C 0.9600 0.0069 (0.9431, 0.9769)
β3 WS 1.0063 0.0081 (0.9864, 0.10263)

aSalt types: NS_A, no salt acetic acid and ammonia; NS_C, no salt citric and ammonia;
WS, acetic acid and ammonia treatments with CaCl2 and NaCl mixtures.

roughly constant over a wide range of pH values. A weakness is
in evidence for the predictions for NS_A, as they are all less than
their corresponding observed values, with negative relative error.
However, the magnitudes of the errors were within 10% of the
observed pH values.

For solutions containing mixtures of acid or acidified foods,
which may contain low-acid food ingredients, pH prediction is
problematic because the buffers of the system may be undefined.
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However, a reasonable assumption is that a system of monopro-
tic buffers may be used to represent the complex buffering in
these food mixtures if the concentration and pK values can be
estimated (Simms, 1926; Gordon, 1982). By removing the com-
plexity of modeling polyprotic acids, the task of estimating pH
from complex buffer systems became simpler, and the pH estima-
tion algorithm described above (Eq. 2) for monoprotic acids and
bases was therefore used.

To determine the BC of acid or acidified food products and use
this to predict pH changes in the foods as additional ingredients
may be added, we developed a BC model using a combination
of trigonometric regression and nonlinear curve fitting methods.
The algorithm consisted of a Matlab “Live-Script” file with an
associated parameter file and Matlab functions (Table 1 and 2). The
results illustrating the BC modeling process and pH prediction
for a 0.6 M acetic acid solution with 2% NaCl are shown in
Figure 4. Titration data were first converted to BC using Eq. 3 as
implemented in the Data2Beta.m algorithm (Table 1; Figure 4A).
To facilitate curve fitting, we found that it was helpful to have BC
values at the ends of the BC curve to be approximately equal, so the
data were manually trimmed (Figure 4A, blue circles) by setting the
trim_beg and trim_end values in the parameter file (Table 2). Gaps
in the titration curve were automatically filled with a linear model
between gap end points based on parameters set in a parameter file
(Table 2).

For the trigonometric regression (SCBCfit.m algorithm;
Table 1; Eq. 4), we found that α = 0.5 resulted in a BC model
for pH 2 to 12 that had model results similar to observed BC
data. By default, we used 15 sine–cosine paired terms, which were
sufficient to approximate most BC curves generated for acid and
low-acid food ingredients (Longtin et al., 2020). The trigono-
metric regression results for the acetic acid BC data are shown in
Figure 4B (black line). Subsequently, the BC model (Eq. 7) was
used to fit the smoothed trigonometric regression line representing
the BC data with the Matlab constrained nonlinear curve-fitting
algorithm, fmincon.m (Table 1; Figure 4C). For the acetic acid
data, the pK values were constrained by the upper (UB) and lower
(LB) pH bounds, typically defined as pH 12 and 2, respectively,
in the parameter file (Table 2). The initial pK and concentration
values for the curve fitting algorithm included seven (NpKs =
7; Table 2) evenly distributed pH values between pH 2 and 12.
Similar pK values were combined during processing based on a
defined tolerance (pK_tol = 0.2; Table 2) to reduce the number
of pK values to approximate the BC curve. For the acetic acid
solution, a single pK was estimated by the model, at a pH value
of 4.52. This pH was approximately equal to the expected pK of
4.49 for a 0.6 M acetic acid solution in 2% NaCl (ionic strength
of 0.342). The pK correction for ionic strength was done using
the Davies equation (Butler & Cogley, 1998, p. 49).

To estimate a value for the salt of an acid or base needed to cor-
rect the predicted pH based on measured and estimated pH values
from the pK-concentration matrix, the Matlab fminsearch.m al-
gorithm was used to estimate an An (positive) or Ct (negative)
value from Eq. 2. For titration of known salts of an acid or base,
this An or Ct value may be set as a positive or negative value in
the parameter file (adjC; Table 2) if it is known that the salt of
an acid was used for titration. For the acetic acid solution used,
AdjC was initially set to zero. The unadjusted pH estimated by the
estimated pK and buffer concentration was 2.31 and the measured
pH (mean of the initial pH for the acid and base titrations) was
2.41. This required a cation correction of 2.35 mM (modeled as
Ct = –2.35 in Eq. 2) for the estimated pH to match the observed

Figure 4–The BC modeling method for 0.6 M acetic acid. A commercial
vinegar solution (approximately 0.6 M acetic acid) was titrated with 1.22
N HCl and then with 1.3 N NaOH. The BC curve (purple circles) that is the
derivative of the combined titration curves (A) was trimmed (blue circles)
to result in a BC curve with symmetrical ends, followed by linear gap filling
(black circles). The vertical red and blue lines represent the initial pH of
the acid and base titrations, respectively. The trigonometric regression (B,
black curve) was fit to the BC data line. Panel C shows the BC model fit
(black curve), the BC of water (red curve), the pH calculated from the mean
of the initial titration values (black x), and the predicted pH from the BC
model unadjusted for Ct (red circle); the pK (pH value) and BC (β) value for
the predicted buffer are represented by the black vertical line.

pH. It is possible that the error in the model prediction for pH
was incorrect due to other factors than a cation salt of the acid, so
this correction should only be considered one possible explana-
tion for the error, which could be due to numerical inaccuracies
or errors in titration. In addition to the estimated pK value, the
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Figure 5–Measured and predicted acetic acid concentration. The concen-
tration of the acetic acid buffer in solution as measured by HPLC (X axis)
and as predicted by the BC model (Y axis) is shown (triangles). The line
represents a second-order polynomial regression, with an r2 = 0.9935.

Table 4–Buffers predicted for the citric acid solution.

pKa
Adjusted

pKb
Predicted

pKc
Concentration

(mM)
Buffer

capacity

3.13 2.86 3.01 12.50 0.0094
4.76 4.49 4.51 13.36 0.0078
6.39 6.12 5.74 10.98 0.0063

apK value from CRC (1995)
bpK value adjusted for 2% NaCl using the Davies equation
cpK value predicted by the BC model

pH prediction also depended on the estimated concentration of
the acetic acid derived from the BC model.

Unexpectedly, the predicted buffer concentration for the acetic
acid solution based on the model prediction was 429.3 mM,
but the measured acetic acid concentration by HPLC was
636.0 mM. To investigate this difference, we examined a series
of concentrations for acetic acid solutions without added NaCl
(triangles; Figure 5). The data were found to fit a polynomial
model with a regression coefficient (r2) value of 0.99. For values
less than 400 mM, the measured and predicted values were within
6%; however, for higher concentrations the error increased to
approximately 10% at 500 mM and approximately 24% for 1 M.
The reason for this deviation in estimated buffer concentration
from the measured values at high concentrations (above 400 mM)
remains unclear, although it may be related to ion activity coef-
ficients, which are influenced by ionic strength (Butler & Cogley,
1998, p. 49). This will be the subject of future investigation.
Despite this difference, however, the estimated pH from the
predicted pK of 4.52 and concentration of 429 mM acetic acid
was only 0.1 pH units different from the observed value (2.31
predicted compared with 2.41 observed). However, this approx-
imated the pH predicted for the acetic acid concentration of the
titrated solution as measured by HPLC (636 mM) which was 2.36.

A solution of citric acid in 2% NaCl was titrated and the result-
ing matrix of monoprotic buffers was used to calculate solution
pH. The BC model predicted three monoprotic acid buffers (Fig-
ure 6; Table 4). The mean of the initial pH from the acid and base
titrations was pH 2.50 ± 0.003, and the predicted pH from the BC
model using Eq. 2 was 2.39. The three estimated concentrations
for predicted buffers (Table 4) had a mean value of 12.28 ±
1.209 mM, closely approximating the 12.4 mM citric acid solution
used for titration. The pK values for the predicted buffers were
similar to the pK values for citric acid adjusted for 2% NaCl, with
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Figure 6–The BC model of 12.4-mM citric acid. The three monoprotic buffers
identified by the model representing citric acid had pK values of 3.01, 4.51,
and 5.74 (black vertical lines). The observed and predicted pH (black x and
red circle on the x-axis) was 2.50 and 2.39, respectively.

the predicted 3.01, 4.51, and 5.74 pK buffers differing from the
calculated pK values (adjusted for 2% NaCl) by –0.15, –.002, and
0.38 pH units, respectively. The reason for these differences may
be due to titration error or other unknown factors; however, the
predicted pH error from these model buffers was approximately
0.1 pH units, similar to errors obtained in the pH validation results
shown in Figure 3. These results support the assumption that
polyprotic acids may be modeled as a composite of monoprotic
acid buffers as proposed by Simms (1926) and Gordon (1982).

4. CONCLUSIONS
Models for estimating pH, pK, and concentrations of buffers

in solution were developed and implemented in a Matlab “live-
script” format. By combining buffer modeling with pH predic-
tion, the pH of solutions with complex buffering could be es-
timated. The methods were based on standard ionic equilibria
equations and were implemented with a two-step modeling pro-
cedure, involving a trigonometric regression, followed by a non-
linear curve-fitting algorithm to estimate concentration and pK
values for buffer solutions. Concentrations were underestimated
for acetic acid greater than 400 mM, so further research may be
needed. The models may be useful for regulatory purposes to help
predict pH changes and pH stability of acid food products such
as salad dressings that have small amounts of low-acid ingredients.
The models may also be useful for product development to predict
the pH of mixtures of acid and low-acid food ingredients.
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Supporting Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.

Table S1. Observed and predicted pH for solutions with no added
salt.

Table S2. Observed and predicted pH for solutions with no added
salt.

Vol. 85, Iss. 4, 2020 � Journal of Food Science 925


